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Abstract—GelSight optical tactile sensors have high-resolution
and low-cost advantages and have witnessed growing adoption in
various contact-rich robotic applications. Sim2Real for GelSight
sensors can reduce the time cost and sensor damage during
data collection and is crucial for learning-based tactile perception
and control. However, it remains difficult for existing simulation
methods to resemble the complex and non-ideal light transmission
of real sensors. In this paper, we propose to narrow the gap
between simulation and real world by using CycleGAN. Due to
the bi-directional generators of CycleGAN, the proposed method
can not only generate more realistic simulated tactile images,
but also improve the deformation measurement accuracy of real
sensors by transferring them to simulation domain. Experiments
on a public dataset and our own GelSight sensors have validated
the effectiveness of our method. Our code will be released upon
acceptance.

Index Terms—Force and Tactile Sensing, Transfer Learning,
Deep Learning Methods.

I. INTRODUCTION

ACTILE sensing is essential in robot’s interaction with

objects and the environment [1], as it directly provides
contact states and offers complementary information aside
from visual sensors. Therefore, the adoption of tactile sensors
have become increasingly popular in various robotic applica-
tions, e.g., cable manipulation [2], peg-in-hole insertion [3].

Learning-based tactile perception and control methods have
shown great success compared with classical counterparts,
since they can extract task-relevant representations in a data-
driven fashion [3], [4], [5]. However, collecting data in real
environment with real robots and tactile sensors can be time-
consuming and damaging to robots and sensors. One common
strategy to address the data collection issue is to first train
robots in a simulated environment, and then transfer it into
realistic setups (Sim2Real).

In this paper, we focus on Sim2Real of GelSight optical
tactile sensors [6], which employ CMOS cameras to capture
the deformation of the elastic membrane. Then, the contact
states are derived from the surface deformation. GelSight
sensors have the advantage of high resolution and low cost,
thus being increasingly adopted in robotic manipulation tasks.

For GelSight sensors, there are two main challenges in
simulation: a) the dynamic deformation of hyperelastic ma-
terial is hard to simulate, and b) the complex and non-ideal
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Fig. 1. Overview of the proposed method. On the Sim2Real side, the proposed
method produces realistic tactile image; on the Real2Sim side, the depth
reconstruction quality is improved.

illumination condition and light transmission in real sensors
makes it hard to tune simulation parameters. Here in this paper,
we mainly focus on the second challenge: how to generate
optically realistic tactile images from simulation. Several sim-
ulation methods based on traditional rasterization method have
been proposed, but the similarity between Sim and Real is
limited [7][8]. On the contrast, differentiable rendering based
on the path-tracing algorithm is also implemented [9], but the
computational cost is high.

From another aspect, the non-ideal illumination condition
not only makes accurate simulation difficult, but also decreases
the depth reconstruction accuracy, because the assumptions of
photometric stereo method [10] do not hold. Although end-to-
end pixelwise neural network can mitigate this issue, a huge
amount of aligned data is needed [11].

Considering the aforementioned problems, we aim at nar-
rowing the sim-real gap bi-directionally in an unsupervised
manner, to solve the simulation and depth reconstruction
problems simultaneously. Because the differences between
Real and Sim for GelSight mainly lie in color and light dis-
tributions, we get the inspiration from the image-style-transfer
task successfully completed by Cycle-Generative-Adversarial-
Network (CycleGAN) [12]. Following this Domain Adaptation
approach, by training CycleGAN with unpaired data collected
from simulation and real world, we can enhance the simulated
images to better mimic the real ones. Moreover, thanks to
the bi-directional generators of CycleGAN, we can reduce the
effect of non-ideal illumination in real GelSight sensors by
transferring the real images to simulated ones (Real2Sim), and



improve the deformation measurement accuracy drastically.
We evaluated our method on a public tactile Sim2Real dataset
and our own GelSight sensors. Experimental results show
that our method outperforms existing Sim2Real methods in
the object-classification task; besides, the Real2Sim approach
can improve the deformation measurement accuracy for real
GelSight sensors by 30%.

The remainder of this paper is organized as follows. Firstly,
Section II introduces the related work. Then, our methodology
of bi-directional Sim-Real transfer is presented in Section III.
Next, in Section IV, experiments on a public dataset are con-
ducted to test the Sim2Real transfer ability and generalizability
of the proposed method; in Section V, depth reconstruction
experiments are performed on our self-made sensor. Finally,
Section VI concludes this paper.

II. RELATED WORK
A. Simulation of GelSight sensors

One challenge of simulating tactile sensors is the complex
deformation of the elastomer surface. There are mainly two
approaches to tackling this challenge: physics-based method
or geometry-based method with post-processing. Finite ele-
ment method (FEM) is commonly used as a physics-based
method, with relatively better accuracy, but it relies on a
massive amount of computation, which may affect simulation
efficiency [13], [14]. Geometry-based methods are usually
based on the intersection of object meshes, and then filters
are applied to smooth the contact edge [8], [9]. In this work,
we adopt the geometry-based method for higher simulation
efficiency.

With the deformation of the sensor surface, one can develop
different simulation methods according to the specific kind of
sensing principle. Among the optical tactile sensors, GelSight
is more complicated to simulate because of the complex light
system.

There are currently two ways to generate synthetic GelSight
images. The first is from the rasterization algorithm in com-
puter graphics, including OpenGL renderer [7] and Phong’s
shading model [8]. These methods can reach high throughput,
but is less realistic because of the simplifications made by the
shading model. The other approach [9] utilizes the path-tracing
algorithm, where multiple bounces of light are considered,
resulting in more realistic synthetic images. The authors also
implement differentiable rendering, and therefore the param-
eters of simulation can be efficiently optimized. However,
the realistic effect comes at the cost of large computation
consumption.

In this work, we aim to narrow the Sim-Real gap using
a data-driven approach. We use the traditional rasterization
method to efficiently produce simulated images, and then
train a transformation model from the unpaired Sim and Real
dataset. Details will be presented in Section III.

B. Sim2Real Transfer for GelSight sensors

Simulation method varies as the tactile sensing principle
changes, and so does the Sim2Real method. For the TacTip
sensor, whose image features are not rich, researchers ran

simulations under random-dynamics environments to better
transfer to reality [15]. For an optical-flow-based sensor,
researchers built a sensor-dependent calibration layer to map
between real images and simulated features [16]. The method
is concise and has good generalizability, but it is not suitable
for GelSight-like sensors. For GelSight-like sensors, Fernandes
et al. [8] proposed to add random texture noises in the depth
image before rendering the RGB image, and increased the
Sim2Real classification accuracy by over 30 percent. This
method can be categorized into Domain Randomization.

To the best of our knowledge, Sim2Real for GelSight-like
sensors has not been extensively studied. Aside from the
Domain Randomization method introduced above, we adopt
Domain Adaptation method by using CycleGAN to enhance
simulated images. In Section IV, comparisons will be made
between the texture-based method and the proposed method.

C. GAN for Domain Adaptation

Generative Adversarial Networks (GANs) [17] construct
a learning pattern where the adversarial loss will force the
generator to produce images that are indistinguishable by the
discriminator, which makes it suitable for tasks like image
generation. CycleGAN [12] is a popular variant which utilizes
two sets of GANs, where the images generated by GAN A will
be put into the other GAN B to test the invertibility. CycleGAN
has demonstrated a significant effect on style-transfer, super-
resolution and image-generation tasks on unpaired datasets.

Many robotic applications have used GANs for Domain
Adaptation. In [18], RL-CycleGAN is proposed, which is a
reinforcement-learning-aware Sim2Real method applicable in
robot grasping tasks. In [19], Real2Sim transfer is performed
for visual control, by translating the real images back to the
synthetic domain during policy deployment. In [20], Sim2Real
is used to bridge the dynamics domain gap in robot navigation,
while Real2Sim enabled by CycleGAN is used to bridge the
visual domain gap.

Very related to our method is the concurrent work of Church
et al., where Real2Sim for the optical tactile sensor TacTip is
proposed [5]. In their work, a pix-to-pix GAN [21] was used
to map TacTip tactile images to simulated depth maps. Their
work differs from ours in the following aspects:

e The concurrent work focuses on contact simulation and
the input images are not rich in features. In this work,
we preserve the detailed geometry of tactile images; we
realize this by increasing the optical similarity between
simulated and real images.

« In their work, a supervised pix-to-pix translation network
was used. Therefore, the simulated image and real image
are required to be strictly paired. Consequently, the data
collection procedure needs to be carefully designed; accu-
rate relative pose between the robot and the sensor should
be guaranteed. Contrarily in this paper, only unpaired data
is needed, resulting in minimal manual effort.

III. METHODOLOGY

In this section, the principle of GelSight sensors is firstly in-
troduced. Then, we introduce the adopted simulation method.
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Fig. 2. Structure of GelSight tactile sensor.

Next, to narrow the Sim2Real gap, we introduce the Domain
Adaptation method based on CycleGAN, through which the
real and simulated images can be transferred to each other.

A. Depth Reconstruction Principle of GelSight

As can be seen in Fig. 2, in GelSight, the elastomer surface
deforms as an object is pressed against it, causing the color
distribution to change with its deformation. Therefore, with
the image captured by the camera, the surface shape can be
solved, and further, the force distribution can be obtained using
the constitutive relation of the elastomer material. It can be
naturally concluded that, to exploit the sense of touch with
GelSight, the depth map of sensor surface should be solved
accurately.

The depth reconstruction principle of GelSight sensors was
initially introduced in [10], where a modified photometric
stereo method was proposed. As stated in [10], when some
certain assumptions are made, the RGB intensity at a point
(z,y) in the image is related to its surface normal:

Oh Oh

I(@.y) = R0, (1)
where h = f(x,y) is the surface height map and R(:) is
the reflectance function. Since there are 3 intensity values
(RGB) and 2 unknown gradients, this equation can be over-
constrained under appropriate conditions. After a calibration
procedure, one can build a lookup table (LUT) through which
the surface gradient (%, %) can be determined by the RGB
intensities. Then, the surface depth map can be obtained by
solving the Poisson Equation [6].

In this paper, we also follow this procedure to calibrate
the sensor and calculate the depth by referring to the open-
source code in [22]. However, it should be noted that, the
above method assumes uniformly distributed illumination and
surface reflection, which is rare in reality because of shadows
and internal reflections.

B. Simulation Method

Since a data-driven approach for bi-directional Sim-Real
transfer is adopted, it is less necessary for the simulation
method to have high fidelity. Instead, we require the simulation
method to be computationally efficient and make it strictly

meet the requirements of the depth reconstruction algorithm
introduced in III-A.

With that purpose, we synthesize our simulation method
from existing rendering algorithms [8]. Specifically, we use
Tacto [7] to acquire the depth image, then apply the Difference
of Gaussians (DoG) method [8] to approximate the real
elastomer deformation, and finally get the RGB tactile image
using only the diffusion part of Phong’s shading model:

IPhong(xay) = Z kd(-t’m : N)im,d (2)
meL

where L is the set of light sources (i.e., LEDs), im is
the emission direction of a given light source m; N is the
surface normal; %,, 4 is the intensity of the diffuse reflection
of light source m respectively; kq is the reflectance property
of the surface related to diffusion. We only include the
diffusion part because the specular reflection part depends
on pixel positions, which will cause errors when using the
LUT method and is unnecessary in this ideal simulation.
Besides, with the Lambertian surface used in newer versions
of GelSight sensors [23][24], the effect of specular reflection
is significantly smaller than diffusion. Then, to blend with the
background acquired from the real sensor, the RGB intensity
change caused by contact is added to the background:

I= IPhong - IPhong,om'gin + Ibackground- (3)

The selection of simulation parameters for our self-made
sensor will be presented in the following section.

C. Domain Adaptation for GelSight with CycleGAN

We utilize the CycleGAN network architecture proposed by
Zhu et al. [12] to realize the invertible transfer between real
and simulated tactile images. We believe in such methodology
because the difference between real and simulated tactile
images mainly includes color and illumination, while this type
of difference is successfully tackled in several CycleGAN
applications. We anticipate that CycleGAN can learn the
illumination and reflection distribution, color difference and
successfully fulfill the Domain Adaptation task.

Next, we first introduce the losses used in CycleGAN
training; then, the Sim2Real approach is introduced, which is
followed by the Real2Sim approach for depth reconstruction.
The complete Sim2Real and Real2Sim procedures are shown
in Fig. 3.

1) losses in CycleGAN: In CycleGAN, two pairs of genera-
tors and discriminators are trained together. In this work, sup-
pose the Sim2Real generator is G g2, and the corresponding
discriminator is Dgop; the Real2Sim generator is G rog, and
the corresponding discriminator is Dgog. The goal of Ggag
is to make Ggar(Igim) (the generated image from simulated
image) resemble Ig., (the real tactile image) as close as
possible, and vice versa. For this purpose, the adversarial loss
[17] is utilized:

Ladv(Gs2r, Ds2r) =Dsar(Gsar(Isim))?

4
+ (1 = Ds2r(Isim))?. @
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Fig. 3. Narrowing the Sim-Real gap using CycleGAN. (a), the Sim2Real
procedure for classification. (b), the Real2Sim Procedure for depth recon-
struction.

On this basis, CycleGAN enforces cycle consistence by
introducing an additional loss, which encourages the recon-
structed image Gros(Gsar(Isim)) to be the same as its
origin Ig;, [12]:

Leyeie(Gr2s, Gs2r) =||Gr2s(Gs2r(Isim)) — Isiml1
+ ||GSZR(GR2S(IReal)) - IRealH(ls')
Next, to preserve the color information, an identity loss

is introduced [12]. The identity loss is aimed at making
generators preserve the original image when it is already in

Fig. 4. The public objects set includes 21 objects. We printed them using
SLA technology, so their surfaces are smoother than the ones in the public
dataset. Because the deformation caused by ‘curved surface’ and ‘flat slab’ is
difficult to distinguish, we remove them from the original dataset.

the target domain, i.e.,

Lidentity(Gras, Gs2r) =|GrasIsim) — Isim|1
+ |Gs2r(IRreat) — ITReatl|1-

Finally, the total loss is the weighted sum of the aforemen-
tioned losses:

(6)

L(GRras,Gs2r,Dras; Dsa2r) = Ladv(GRras, Dras)
+Laav(Gs2r, Dsar)
+AcycleLeyele (GRras, Gs2r)
+Nidentity Lidentity (G r2s, Gs2Rr)

(7

2) Sim2Real for classification: The proposed approach is
the successor of the method in [8]. As shown in Fig. 3(a),
we firstly train CycleGAN based on the real and simula-
tion dataset. For Sim2Real, we input simulated images into
the Sim2Real generator Gg2g, and the generated Sim2Real
images can be used to train the classification model. The
Sim2Real images are supposed to have similar characteristics
as real images. The validation and test split of the classification
model is from the real images. With the classification accuracy,
the transferring ability of the proposed method can be proved.

3) Real2Sim for depth reconstruction: For the reconstruc-
tion of depth maps from tactile images, we propose a
Real2Sim approach, whose procedure is illustrated in Fig.
3(b). After proper training, the Real2Sim generator Gr2g can
be used to transfer real images to simulation-like ones. The
generated Real2Sim image will capture both the real object
geometry and the illumination condition in simulation, thus
mitigating the non-ideal issues in reality that would decrease
the depth reconstruction quality. With part of the real images
and Real2Sim images, we perform calibration and get two
LUTs. Then, we can reconstruct depth maps from the real
images or the Real2Sim images. Comparison between the
depth errors will be made for validation.

IV. EXPERIMENT ON THE PUBLIC DATASET
A. The Public Dataset and Data Preprocessing

The dataset is collected by Fernandes et al. [8]. The images
are from a GelSight 2014 sensor [25]. In total, tactile images
of 21 objects (Fig. 4) are collected for both real and simulated
sensors. In the real tactile images, one can see rich textures in
the contact area, because the objects were printed using fused
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Fig. 5. Real2Sim performance of the proposed method. The image generated
by out method looks similar to real images, better than the existing texture-
augmentation method [8].

deposition modeling (FDM) technology, different from ours in
Fig. 4.

In this dataset, we found some poorly performing pictures
in nearly every classification set in the simulation set, which
does not correspond to the real pictures. The indentation of
some simulated pictures is shallower than the corresponding
real pictures, or even blank, which may be caused by the
inconsistency of the pose correction between the simulation
platform and the real platform. In theory, these shallow or
blank simulated pictures can hardly be distinguished, and
they may interfere with the training of the discriminators.
Therefore, we preprocessed the data.

We used the Canny operator from OpenCV to perform
edge extraction on all images, experimentally found suitable
threshold parameters, filtered the blank and shallow images,
and finally removed 649 simulated images. The corresponding
real images with the same names are also removed. Because
the indentation of classes “Flat slab” and ‘“curved surface”
is too shallow to distinguish, they are completely removed
in the Canny screening, and we will perform classification
network training on the remaining 19 classes of objects with
1429 simulated images and 1429 real images each.

B. Data generation based on CycleGAN

We use the data of training split in simulation set, the data
except training split in real set as the unpaired training data
of CycleGAN. Furthermore, we split the sim and real dataset
into respective training and test set randomly, with 80% dataset
used for training.

As shown in Fig. 5, compared with the original simulation
pictures, CycleGAN effectively enhances the texture and shade
distribution on the simulation picture. Further comparison and
analysis will be shown in classification tasks.

C. Transfer-learning for shape classification

In the contrast experiment of Sim2Real, we have three
groups: control group, CycleGAN comparison group and tex-
tured comparison group. In all experiments, we split training,
validation and test sets as same as the reference paper [8].
As table I shows, the validation and test sets of the three
groups remain the same, while the only difference lies in the
training sets. For the control group, the training set is extracted

from the original simulation data; in the other two comparison
groups, the training sets are changed accordingly.

The classification network is basically the same as the one in
[8], whose backbone is Resnet50. Before training, we adopted
normalization for all images, and “earlystop” is used in the
training process. Each group is trained 10 times to get the
average accuracy and standard deviation.

TABLE I
THE CNN DATASET FOR SIM2REAL CONTRAST EXPERIMENT

Groups Training set Validation set | Test set

Control Sim Real Real
CycleGAN | CycleGAN Generated Real Real

Textured Sim with textures Real Real

The classification accuracies are reported in table II. The
test accuracies have proved that adding random textures can
slightly improve training performance; however, our method
of using CycleGAN is advantageous over the texture-adding
method. The Real2Sim results are also reported for reference.

D. Generalizability of CycleGAN

In the above experiment, CycleGAN has access to the
images from all classes of objects during training. However, in
reality, the contact shapes of the tactile sensor are too diverse
to be completely preset. We expect that the CycleGAN trained
with a limited number of objects will perform well on new
shapes. Therefore, we study the generalizability of CycleGAN.

We split the complete dataset for CycleGAN based on
features. Now, the training set (for CycleGAN ) only contains
15 basic shapes. The remaining 4 shapes are intentionally
excluded due to their features: “dots” is a duplication of
spheres; “parallel lines” is the rotated version of ‘“crossed
lines”; “torus” is similar to “cylinder shell”; “random” is an
arbitrarily generated shape. For simplicity, let CycleGAN1g
denote the CycleGAN trained on all 19 classes, and let
CycleGAN;5 denote the one trained on 15 classes.

The visual results are shown in Fig. 6. For comparison, the
CycleGANig results are shown in the third row. The gener-
alized results in the second row capture the main difference
between simulation and real pictures in shades, light, and other
details and look similar to real pictures, while texture details
on edges are partly lost.

In order to quantitatively test the generalizability of Cy-
cleGAN, we designed new Sim2Real experiments with three
control groups. For a fair comparison, the validation and test
sets are kept consistent among the three groups. The only
difference between the three groups is the training set, where
each group contains four classes from different sources, but
all the 15 remaining classes are generated by CycleGAN1g
(see Table III for details).

As shown in Table III, CycleGAN has considerable gen-
eralizability even faced with unseen objects. This ability is
valuable when tactile sensors are applied to complex tasks.



TABLE II
CLASSIFICATION ACCURACIES OF 10 EXPERIMENTS

Type Validation Test (Std)

Sim2Sim 100% 99.28% (0.78%)
Real2Real 100% 99.29% (0.67%)
Real2Sim 58.33% 72.58% (5.77%)
Real2Sim(CycleGAN) 95.83% 97.94% (1.27%)
Sim2Real 91.66% 84.82% (2.71%)
Sim2Real(Textured) 85.41% 88.04% (2.44%)
Sim2Real(CycleGAN) 97.91% 98.30% (0.27 %)

Excluded in . .
Simulation
training set

Included in
training test

Real

Fig. 6. Generalizability of CycleGAN. Four classes are in the test set: dots,
straight lines, torus and random shape. The first row is original simulation
pictures; the second row is CycleGAN15 enhanced pictures(trained without
these four sets); the third row is a comparison to the second row, which
is trained with C'ycleGAN19 and the fourth row is real pictures. The
generalized results capture the main difference between simulation and real
pictures and look similar to the comparison.

TABLE IIT
TRAINING CONDITIONS OF CYCLEGAN GENERALIZABILITY TEST
Training data Validation Test (Std)
4 cl fi
common part: c‘asses .rom 83.33% 86.51% (3.71%)
Simulation
15 classes from Tl F
CycleGAN19 classes Irom
CycleGANi5 91.66% 97.68% (1.45%)
(generalized)
4 cl fi
Casses HOM 1 97919 | 98.30% (0.27%)
CycleGAN19

V. EXPERIMENT ON OUR SELF-MADE SENSOR

To validate the proposed Real2Sim method for depth recon-
struction, we conduct a series of experiments on our self-made
Sensor.

A. Self-made Sensor and Simulation

Our tactile sensor is developed based on GelSight 2017 [23].
Its structure is shown in Fig. 7(a). This paper mainly focuses
on the RGB tactile image, so we do not laser-cut the markers.
When collecting data, the camera is configured to have the
resolution of 640 x 480, and the captured images are later
cropped to 320 x 320 in the center, as shown in Fig. 8(a).

Reflective

Surface Camera,

Gel

(@) (b)

Fig. 7. The schematic (a) and photo (b) of our self-made sensor.

TABLE IV
SIMULATION PARAMETERS FOR THE SELF-MADE SENSOR
Parameter Name Value
kq 0.6

Light 1 direction (—0.866, 0.5, 0.344)
Light 2 direction 0, —1, 0.344)
Light 3 direction (0.866, 0.5, 0.344)

Light 1 color (26, 45, 255)

Light 2 color (5, 224, 22)

Light 3 color (255, 199, 7)

() (b)

Fig. 8. The real (a) and simulated (b) tactile image of our self-made sensor.
The simulated image is blended with the real background image.

Fig. 9. The 3-axis translation stage provides ground truth depth information
for the quantitative depth reconstruction experiment.

The simulation method for our self-made sensor has been
illustrated in Section III-B. The simulation parameters are
summarized in Table IV, and the resulting simulated tactile
image is shown in Fig. 8(b).

B. Data Collection for the Self-Made Sensor

The objects set is introduced in Section IV-A. The authors
have released the 3D models of the objects [8], so we printed
them using stereolithography (SLA) 3D printing technology,
as shown in Fig. 4. Obviously, our objects have smoother
surfaces. In the previous experiments, we only used 19 objects.
Here for our self-made sensor, we further remove the ‘crossed
lines’ object, since it is nearly the same as ‘parallel lines’. For



TABLE V
DATASETS FOR CLASSIFICATION EXPERIMENTS ON SELF-MADE SENSOR
Experiment name Training set | Validation set | Test set
Real2Real Real Real Real
Sim2Sim Sim Sim Sim
Sim2Real Sim Real Real
Sim2Real(CycleGAN) | Ggor(Sim) Real Real
Real2Sim Real Sim Sim
Real2Sim(CycleGAN) | G Rras(Real) Sim Sim

TABLE VI

CLASSIFICATION ACCURACIES OF 10 EXPERIMENTS

ON SELF-MADE SENSOR

the remaining 18 objects, we manually press them against the
sensor with different poses, and finally 1200 tactile images for
each object are collected.

To generate the simulation dataset, we use PyBullet API to
change the pose of the object, and force it to contact the sensor
surface. For each object, 400 poses are randomly generated,
and for each pose, 3 levels of force are exerted to the object.
Therefore, 1200 tactile images in total for each object are
collected in the simulation dataset.

Since the data collection procedure is randomized, the real
and simulation dataset are unpaired. Therefore, the sophisti-
cated alignment and registration process is not necessary.

C. CycleGAN Training on self-collected datasets

For the collected simulation and real datasets, we split
them into training, validation and test sets respectively, in the
ratio of 7:1:2. Because we want to conduct both Sim2Real
and Real2Sim experiments, we use the training sets of both
datasets for training CycleGAN. The validation and test sets
are used to verify whether CycleGAN improves the classifi-
cation accuracy.

In CycleGAN training, most of the training settings are the
same as the default ones. The main change is the number of
layers of the discriminators, which is changed from 3 to 2.

D. Classification Accuracy on self-collected datasets

In this section, the main purpose is to validate the bi-
directional transfer ability of CycleGAN. With the assist of
the trained CycleGAN, we perform a series of classification
experiments. Table V summarizes the data source of each
dataset split for each experiment. The Real2Real and Sim2Sim
experiments provide the theoretical upper bound for Sim2Real
and Real2Sim performance. Each experiment was run 10
times, to get more accurate statistical results.

The test accuracies in Table VI show that both Real2Sim
and Sim2Real performance are close to the upper bound with
the assist of CycleGAN. The results agree with those on the
public dataset, which further demonstrates the effectiveness of
the proposed method.

E. Real2Sim Depth Reconstruction Result

To validate whether the proposed Real2Sim method can
improve the depth reconstruction quality, quantitative exper-
iments are performed. With the 3-axis translation stage shown
in Fig. 9, tactile images of 4 objects (small sphere, large

Type Validation (Std) Test (Std)
Sim2Sim 99.49%(0.47%) 99.53%(0.52%)
Real2Real 98.98%(0.44%) 98.89(0.36%)
Sim2Real 87.56%(1.43%) 86.88%(2.37%)
Sim2Real(CycleGAN) | 97.91%(0.75%) | 97.79%(0.63%)
Real2Sim 93.70%(2.34%) 93.25%(2.30%)
Real2Sim(CycleGAN) | 97.06%(1.33%) | 96.62%(1.63%)
-A- small sphere, Real o .. -@
" loroe sphere, Real e
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Fig. 10. The results of quantitative depth reconstruction experiments. Depth
errors from the real images are colored red, while those from Real2Sim
imagesd are colored blue. In most cases, the proposed Real2Sim method
significantly outperforms the original method, with an average of 30%.

sphere, triangle and prism) with ground truth (GT) indentation
depth are collected. The GT indentation depth has 4 values:
0.25mm, 0.5mm, 0.75mm and 1.00mm respectively.

Following the procedure introduced in Section III-C3, two
LUTs are generated for real images and CycleGAN-generated
Real2Sim images respectively. With the LUTSs, depth maps
are reconstructed from the real images and the generated
Real2Sim images.

The depth errors against the GT depth are calculated, and
the results are summarized in Fig. 10. Two of them are shown
in detail in Fig. 11. Fig. 11 shows the original RGB image,
the Real2Sim image, the depth reconstructed from original
images, and the depth reconstructed from the Real2Sim image.
The white masks in RGB images and the contour line in
depth images show the area which is taken into account for
calculating the root-mean-square error (RMSE) of depth. From
the depth image, we can visually find that the depth images
reconstructed from Real2Sim images tend to have a clearer
background; this shows that the proposed method can partly
eliminate the noise, interreflection or shadows. From Fig. 10,
we find that in most cases, the Real2Sim method performs
significantly better than the original real images. Only in some
cases, when the indentation is shallow, the Real2Sim method
performs equally or worse. On average, the Real2Sim method
can decrease the depth reconstruction error by 30%.

VI. CONCLUSION

In this paper, we propose to utilize CycleGAN to narrow
the gap between simulation and reality for GelSight tactile
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Fig. 11. Two examples of the quantitative depth reconstruction experiment.
The masks in RGB images and the contours in depth maps show the area
which is taken into account for calculating depth error.

sensors. On one hand, our method can generate realistic
simulated tactile images for Sim2Real shape classification
task; on the other hand, it can significantly improve the depth
reconstruction accuracy of real sensors by transforming them
to simulation domain and mitigating the non-ideal illumination
issues.

However, there are still some limitations in our work, that
only the geometrical and optical properties of tactile sensors
are taken into account and the physical property is neglected.
For future work, we will study the physical simulation of
tactile sensors and integrate the sensor simulation into robot
simulation environment for sim2real control policy of contact-
rich manipulation tasks.
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